LC 2014: Paper 1

QUESTION 9 (75 MARKS)
Question 9 (a)

Time, t	0	1	2	3	4	5	6	7	8	9	10
Height, h	0	9	16	21	24	$\mathbf{2 5}$	$\mathbf{2 4}$	$\mathbf{2 1}$	$\mathbf{1 6}$	9	0

$$
\begin{aligned}
& h=10 t-t^{2} \\
& t=0: h=10(0)-(0)^{2}=0 \mathrm{~m} \\
& t=1: h=10(1)-(1)^{2}=10-1=9 \mathrm{~m} \\
& t=2: h=10(2)-(2)^{2}=20-4=16 \mathrm{~m} \\
& t=3: h=10(3)-(3)^{2}=30-9=21 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& h=10 t-t^{2} \\
& t=4: h=10(4)-(4)^{2}=40-16=24 \mathrm{~m} \\
& t=9: h=10(9)-(9)^{2}=90-81=9 \mathrm{~m} \\
& t=10: h=10(10)-(10)^{2}=100-100=0 \mathrm{~m}
\end{aligned}
$$

Marking Scheme Notes
Question 9 (a) [Scale 15C (0, 5, 10, 15)]
5: - At least one correct value

- Substitutes correctly at least once

10: • 5 or 6 correct values

Question 9 (b)

Marking Scheme Notes

Question 9 (b) [Scale 15C (0, 5, 10, 15)]
5: • At least 1 point plotted correctly
10: - Points connected with straight edge

- At least 5 points plotted correctly and joined
- All points plotted correctly but not joined

Note: Answers to (c) (i) (ii) (iii) based on candidate's graph. Tolerance $\pm 1 / 2$ unit

Question 9 (c)

(i) Go to 2.5 s on the time axis. Draw a vertical line up until it meets the curve and then a horizontal line out to the height axis. Read off the height h.
$\therefore h=18.75 \mathrm{~m}$
(ii) Go to 18.75 m on the height axis. Draw a horizontal line across until it meets the curve for the second time. Draw a vertical line down to the time axis. Read off the time t.
$\therefore t=7.5 \mathrm{~s}$
(iii) Maximum point $(5,25)$

Marking Scheme Notes

Question 9 (c) (i) [Scale 5B (0, 2, 5)]
2: - Uses $t=2 \cdot 5$ to solve
Question 9 (c) (ii) [Scale 5B (0, 2, 5)]
2: - Correct h ordinate indicated on graph
Question 9 (c) (iii) [Scale 5B (0, 2, 5)]
2: - Only one ordinate given

- Coordinates reversed

Question 9 (d)

(i) $(6,24)=\left(x_{1}, y_{1}\right),(7,21)=\left(x_{2}, y_{2}\right)$
$m=\frac{21-24}{7-6}=-3$
(ii) Yes. For a one-second time interval, the rocket travels 5 m compared to 3 m in part (i). It has a greater negative slope.
$(7,21)=\left(x_{1}, y_{1}\right),(8,16)=\left(x_{2}, y_{2}\right)$
$m=\frac{16-21}{8-7}=-5$

Marking Scheme Notes
Question 9 (d) (i) (ii) [Scale 10D (0, 3, 5, 8, 10)]
3: • Any work of merit e.g. correct formula given
5: - One slope calculated correctly

- Both slopes calculated but with errors
- Correct answer to (ii) but no slope in (i)

8: • Both slopes calculated correctly with incorrect or no conclusion

Question 9 (e)

(i) $h=10 t-t^{2}$
$\frac{d h}{d t}=10-2 t$

Formulae and Tables Book

Calculus: Derivatives [page 25]

$$
y=x^{n} \Rightarrow \frac{d y}{d x}=n x^{n-1}
$$

(ii) $\frac{d h}{d t}=0 \Rightarrow 10-2 t=0$
$10=2 t$
$\therefore t=5 \mathrm{~s}$
$h_{\text {Max }}=10(5)-(5)^{2}=50-25=25 \mathrm{~m} \leftarrow$ Put $t=5 \mathrm{~s}$ into the formula for height to find the
(iii) $v=\frac{d h}{d t}=10-2 t$

$$
\begin{aligned}
t=3: v & =10-2(3) \\
& =10-6 \\
& =4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

maximum height $h_{\text {Max }}$
Findturning ioints(Localmaxiumum/minimum)
Put $\frac{d y}{d x}=0$ and solve for x

$$
\begin{gathered}
\text { Formula: Velocity/Speed } \\
\text { Velocity (Speed) } v=\frac{\text { Change in distance }}{\text { Change in time }}=\frac{d s}{d t}
\end{gathered}
$$

Note: Distance in this case is height.

Marking Scheme Notes

Question 9 (e) (i) [Scale 5B (0, 2, 5)]
2: - 1 term differentiated correctly
Question 9 (e) (ii) [Scale 5C (0, 2, 3, 5)]
2: $\cdot \frac{d h}{d t}=0$

- Use of their $\frac{d h}{d t}$

3: - The candidate's value of t substituted into expression for h

- Solves their $\frac{d h}{d t}=0$ correctly

Question 9 (e) (iii) [Scale 5B (0, 2, 5)]
2: \cdot Recognition that speed $=\frac{d h}{d t}$

- 3 substituted into $\frac{d h}{d t}$ and stops

Question 9 (f)

You can find the slope of the tangent to a curve by differentiation.
Solve for t by putting the slope equal to 4 .
Find the corresponding value of h by putting this value of t into the height formula.
$\frac{d h}{d t}=10-2 t=2$
$10-2=2 t$
$8=2 t$
$\therefore t=4$
$h=10(4)-(4)^{2}=40-16=24$
The co-ordinates are $(4,24)$.

Marking Scheme Notes

Question 9 (f) [Scale 5C (0, 2, 3, 5)]
2: - Correct structure to $\frac{d h}{d t}=2$

- Correct answer with no work or without calculus

3: - The candidate's value of t substituted into expression for h and stops or continues with errors

- Solves their $\frac{d h}{d t}=2$ correctly

