LC 2014: PAPER 1

QUESTION 9 (75 MARKS) Question 9 (a)

Time, t	0	1	2	3	4	5	6	7	8	9	10
Height, h	0	9	16	21	24	25	24	21	16	9	0

$$h = 10t - t^2$$

$$t = 0$$
: $h = 10(0) - (0)^2 = 0$ m

$$t = 1$$
: $h = 10(1) - (1)^2 = 10 - 1 = 9$ m

$$t = 2$$
: $h = 10(2) - (2)^2 = 20 - 4 = 16$ m

$$t = 3$$
: $h = 10(3) - (3)^2 = 30 - 9 = 21$ m

$$h = 10t - t^2$$

$$t = 4: h = 10(4) - (4)^2 = 40 - 16 = 24 \text{ m}$$

$$t = 9 \cdot h = 10(9) - (9)^2 = 90 - 81 = 9 \text{ m}$$

$$t = 9: h = 10(9) - (9)^2 = 90 - 81 = 9 \text{ m}$$

 $t = 10: h = 10(10) - (10)^2 = 100 - 100 = 0 \text{ m}$

MARKING SCHEME NOTES

Question 9 (a) [Scale 15C (0, 5, 10, 15)]

- 5: At least one correct value
 - Substitutes correctly at least once
- 10: 5 or 6 correct values

Question 9 (b)

MARKING SCHEME NOTES

Question 9 (b) [Scale 15C (0, 5, 10, 15)]

- 5: At least 1 point plotted correctly
- 10: Points connected with straight edge
 - At least 5 points plotted correctly and joined
 - All points plotted correctly but not joined

Note: Answers to (c) (i) (ii) (iii) based on candidate's graph. Tolerance $\pm \frac{1}{2}$ unit

Question 9 (c)

- (i) Go to 2.5 s on the time axis. Draw a vertical line up until it meets the curve and then a horizontal line out to the height axis. Read off the height h.
 - $\therefore h = 18.75 \text{ m}$
- (ii) Go to 18.75 m on the height axis. Draw a horizontal line across until it meets the curve for the second time. Draw a vertical line down to the time axis. Read off the time t.
 - $\therefore t = 7.5 \text{ s}$
- (iii) Maximum point (5, 25)

MARKING SCHEME NOTES

Question 9 (c) (i) [Scale 5B (0, 2, 5)]

2: • Uses t = 2.5 to solve

Question 9 (c) (ii) [Scale 5B (0, 2, 5)]

2: • Correct *h* ordinate indicated on graph

Question 9 (c) (iii) [Scale 5B (0, 2, 5)]

- 2: Only one ordinate given
 - Coordinates reversed

Question 9 (d)

(i)
$$(6, 24) = (x_1, y_1), (7, 21) = (x_2, y_2)$$

 $m = \frac{21 - 24}{7 - 6} = -3$

(ii) Yes. For a one-second time interval, the rocket travels 5 m compared to 3 m in part (i). It has a greater negative slope.

$$(7, 21) = (x_1, y_1), (8, 16) = (x_2, y_2)$$

 $m = \frac{16 - 21}{8 - 7} = -5$

MARKING SCHEME NOTES

Question 9 (d) (i) (ii) [Scale 10D (0, 3, 5, 8, 10)]

- 3: Any work of merit e.g. correct formula given
- 5: One slope calculated correctly
 - Both slopes calculated but with errors
 - Correct answer to (ii) but no slope in (i)
- 8: Both slopes calculated correctly with incorrect or no conclusion

Question 9 (e)

(i)
$$h = 10t - t^2$$
$$\frac{dh}{dt} = 10 - 2t$$

FORMULAE AND TABLES BOOK Calculus: Derivatives [page 25]

$$y = x^n \Rightarrow \frac{dy}{dx} = nx^{n-1}$$

(ii)
$$\frac{dh}{dt} = 0 \Rightarrow 10 - 2t = 0$$
 | FINDTURNINGPOINTS(LOCALMAXIUMUM/MINIMUM)|
$$10 = 2t$$
 | Put $\frac{dy}{dx} = 0$ and solve for x |
$$t = 5 \text{ s}$$

$$h_{\text{Max}} = 10(5) - (5)^2 = 50 - 25 = 25 \text{ m} \leftarrow \text{Put } t = 5 \text{ s into the formula for height to find the maximum height } h_{\text{Max}}$$

(iii)
$$v = \frac{dh}{dt} = 10 - 2t$$

 $t = 3 : v = 10 - 2(3)$
 $= 10 - 6$
 $= 4 \text{ m/s}$

FORMULA: Velocity/Speed

Velocity (Speed)
$$v = \frac{\text{Change in distance}}{\text{Change in time}} = \frac{ds}{dt}$$

Note: Distance in this case is height.

MARKING SCHEME NOTES

Question 9 (e) (i) [Scale 5B (0, 2, 5)]

2: • 1 term differentiated correctly

Question 9 (e) (ii) [Scale 5C (0, 2, 3, 5)]

$$2: \quad \bullet \frac{dh}{dt} = 0$$

• Use of their
$$\frac{dh}{dt}$$

3: • The candidate's value of t substituted into expression for h

• Solves their
$$\frac{dh}{dt} = 0$$
 correctly

Question 9 (e) (iii) [Scale 5B (0, 2, 5)]

2: • Recognition that speed =
$$\frac{dh}{dt}$$

• 3 substituted into
$$\frac{dh}{dt}$$
 and stops

Question 9 (f)

You can find the slope of the tangent to a curve by differentiation.

Solve for *t* by putting the slope equal to 4.

Find the corresponding value of *h* by putting this value of *t* into the height formula.

$$\frac{dh}{dt} = 10 - 2t = 2$$

$$10 - 2 = 2t$$

$$8 = 2t$$

$$\therefore t = 4$$

$$h = 10(4) - (4)^2 = 40 - 16 = 24$$

The co-ordinates are (4, 24).

MARKING SCHEME NOTES

Question 9 (f) [Scale 5C (0, 2, 3, 5)]

- 2: Correct structure to $\frac{dh}{dt} = 2$
 - Correct answer with no work or without calculus
- **3**: The candidate's value of *t* substituted into expression for *h* and stops or continues with errors
 - Solves their $\frac{dh}{dt}$ = 2 correctly